Main Supervisor	Dr Mahbuba Afrin
Other supervisors (if applicable)	
Project Title	Uncertainty-Aware Robotic Task Allocation in Agricultural Cyber-Physical Systems
Student location(s) for the project	Online or Curtin University Bentley Campus
Duration of project	Eight weeks
Project Description	critical tasks such as planting monitoring and harvesting which
	boosts efficiency and productivity while minimizing resource
	wastage and environmental impact. Equipped with advanced
	sensors and data analytics, these robotic systems provide real-time
	insights into crop health and soil conditions, enabling precise and
	informed decision-making. However, the agricultural environment
	is challenged with uncertainties like weather variations, sensor
	allocation is crucial for ensuring that robotic operations remain
	robust and reliable despite these challenges. By integrating
	uncertainty models into task allocation strategies, robots can
	dynamically adapt to changing conditions, optimize resource usage,
	and mitigate risks, thereby significantly enhancing the overall
	effectiveness and sustainability of precision agriculture. Therefore,
	uncertainty-aware task allocation strategies for robotic systems in
	agricultural cyber-physical systems (CPS). The primary goal of this
	project is to develop and implement uncertainty-aware task
	allocation strategies for robotic systems in agricultural cyber-
	physical systems (CPS).
	Throughout this eight-week project one research intern will work
	Week 1-2: Literature Review and Problem Definition
	Review existing research on uncertainty modelling and task
	allocation in robotics and agricultural CPS.
	Identify key sources of uncertainty in agricultural CPS.
	Week 2.4: Methodology Development
	Develop probabilistic and robust ontimization models for task
	allocation under uncertainty using machine learning.
	Design a dynamic task allocation algorithm adaptable to real-
	time changes.
	Select software tools for implementation, especially python based.
	Week 5: Data Collection and Simulation Setup
	Gather or use existing datasets to model uncertainties
	 Set up machine learning based simulation environments to test
	uncertainty aware task allocation strategies.

2025 EECMS Summer Internship Application Form

Week 6: Model Implementation and Testing
Implement task allocation strategies using selected tools.
• Conduct simulations to evaluate performance under various uncertainties.
Analyze results to identify patterns and impacts.
Week 7-8: Documentation and Presentation
• Document methodology, implementation, and findings.
Prepare a comprehensive report and presentation.
• Submit report and present findings to project supervisors.
Required Skills
 Proficiency in programming languages such as Python, MATLAB.
• Ability to preprocess, analyze, and interpret data.
 Strong analytical skills to identify and address project challenges.
 Proficiency in documenting methodologies, processes, and findings.